A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects.

نویسندگان

  • Jinqiu Zhang
  • Qizhou Lian
  • Guili Zhu
  • Fan Zhou
  • Lin Sui
  • Cindy Tan
  • Rafidah Abdul Mutalif
  • Raju Navasankari
  • Yuelin Zhang
  • Hung-Fat Tse
  • Colin L Stewart
  • Alan Colman
چکیده

The segmental premature aging disease Hutchinson-Gilford Progeria syndrome (HGPS) is caused by a truncated and farnesylated form of Lamin A called progerin. HGPS affects mesenchymal lineages, including the skeletal system, dermis, and vascular smooth muscle (VSMC). To understand the underlying molecular pathology of HGPS, we derived induced pluripotent stem cells (iPSCs) from HGPS dermal fibroblasts. The iPSCs were differentiated into neural progenitors, endothelial cells, fibroblasts, VSMCs, and mesenchymal stem cells (MSCs). Progerin levels were highest in MSCs, VSMCs, and fibroblasts, in that order, with these lineages displaying increased DNA damage, nuclear abnormalities, and HGPS-VSMC accumulating numerous calponin-staining inclusion bodies. Both HGPS-MSC and -VSMC viability was compromised by stress and hypoxia in vitro and in vivo (MSC). Because MSCs reside in low oxygen niches in vivo, we propose that, in HGPS, this causes additional depletion of the MSC pool responsible for replacing differentiated cells lost to progerin toxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome.

Children with Hutchinson-Gilford progeria syndrome (HGPS) suffer from dramatic acceleration of some symptoms associated with normal aging, most notably cardiovascular disease that eventually leads to death from myocardial infarction and/or stroke usually in their second decade of life. For the vast majority of cases, a de novo point mutation in the lamin A (LMNA) gene is the cause of HGPS. This...

متن کامل

A High Throughput Phenotypic Screening reveals compounds that counteract premature osteogenic differentiation of HGPS iPS-derived mesenchymal stem cells

Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explo...

متن کامل

An inhibitory role of progerin in the gene induction network of adipocyte differentiation from iPS cells

Lipodystrophies, characterized by partial or complete loss of adipose tissue, have been associated with mutations in the lamin A gene. It remains unclear how lamin A mutants interfere with adipose tissue formation. Hutchinson-Gilford progeria syndrome (HGPS) presents the most severe form of lamin A-associated diseases, whose patients show a complete loss of subcutaneous fat. Using iPSCs reprogr...

متن کامل

Mechanisms controlling the smooth muscle cell death in progeria via down-regulation of poly(ADP-ribose) polymerase 1.

Hutchinson-Gilford progeria syndrome (HGPS) is a severe human premature aging disorder caused by a lamin A mutant named progerin. Death occurs at a mean age of 13 y from cardiovascular problems. Previous studies revealed loss of vascular smooth muscle cells (SMCs) in the media of large arteries in a patient with HGPS and two mouse models, suggesting a causal connection between the SMC loss and ...

متن کامل

Accelerated aging syndromes, are they relevant to normal human aging?

Hutchinson-Gilford Progeria (HGPS) and Werner syndromes are diseases that clinically resemble some aspects of accelerated aging. HGPS is caused by mutations in theLMNA gene resulting in post-translational processing defects that trigger Progeria in children. Werner syndrome, arising from mutations in the WRN helicase gene, causes premature aging in young adults. What are the molecular mechanism...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell stem cell

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 2011